Category Archives: Oil Spills

Healthy Waters Coalition – What’s on Our Minds, In Our Hearts

At my Healthy Waters Coalition meeting tonight, where we discussed the value of accurate, balanced information about oil spill prevention, I accidentally spilled pink lemonade across the agenda.  (From now on, the incident will be remembered as the “pink spill,” and it can be added to a long list of funny things I have done while leading coalition meetings.) I began to think about what’s really motivating our efforts to inform and educate Sebago Lakes Region citizens and local businesses about watershed issues.

We are a water-based economy here in this part of southern Maine. Boat rentals and recreation-based businesses, real estate and restaurants, florists and landscaping contractors, summer camps for children and accommodations (think: Inn by the Pond), not to mention waterfront property in towns–and property taxes paid to Towns–all bring in millions of dollars in annual revenue for the Sebago Lakes Region. The State of Maine tracks the annual revenue for freshwater fishing and accommodations for several Lakes Region towns. Wetlands are valued for their ecological services, too, and that translates to dollars. Real dollars. Wetlands attenuate flooding and aid in filtering waters to provide good water quality in our groundwater, which produces the drinking water for those who have private wells.  All of the headwater streams (94-100% of streams) in the region are located in Source Water Protection Areas (SPAs), meaning that they directly feed into a public drinking water system. In our region, that system is Sebago Lake, which is so clean, it’s exempt from the federal filtration requirement, an expensive option if ever it were to become necessary for the Portland Water District to put in place.

I want to reach out to other groups engaged in an open dialogue about the possible transportation of oil sands through New England and the importance of protecting our local watersheds, local economy–as the two are interconnected.  While the HWC already has members in 8 Lakes Region towns, representatives from local government boards and committees, watershed organizations, local businesses and other interests, such as Saint Joseph’s College, and we have partnered with some fantastic environmental and conservation-oriented nonprofit organizations already, I’d like to connect the Healthy Waters Coalition with a broader network.  I’m interested in connecting with folks at ConservAmerica, town and city revitalization committees, regional Chambers of Commerce, and the business community. We have so much invested in our waters. While pondering this, I scribbled some thoughts and turned it into this info-graphic (below). I like how it came out. Let me know what you think.

HWC_wordle3

Convergence: Where Streams & Stories Connect

Eighteen years ago, my brother and I eloped with our mother to Kaua’i. I say “eloped” because the trip was a romantic surprise after my step-dad proposed over the phone. He was already there—on Kaua’i. It was February, 1995, my senior year of high school, and the end of February school vacation. I turned 18 during the 23 hour plane ride to the Big Island of Hawai’i. My parents—my mother and step-dad, married at the point of convergence, where two streams met before emptying into the Pacific. Waterfalls peeled like tropical fruit through the rainforest. Two fed these streams. Neither my brother nor I had ever experienced swimming in the Pacific Ocean, let alone kayaking through a jungle. One day we hiked to a massive 40-foot waterfall, which we learned had been featured in one of the King Kong movies. I slipped behind the falls into a cave, sprayed by its awesome force. Those streams created our new family.

Flash forward to 2013:  A small perennial stream meanders through my black ash seep, past a vernal pool and flows into the pond. It’s not dramatic. It’s barely audible. The nor’easter that took everyone on the East coast by surprise yesterday dropped over a foot of snow. It’s that light fluffy stuff perfect for a snowshoe hike. Everything’s quiet, cold and white. Yet the stream trickles, melting the snow on either side. It persists. This stream is one of many, many streams in Maine that flow either perennially, intermittently or ephemerally—that is, after storms. Streams criss-cross and converge, form major tributaries like Panther Run, feed creeks and rivers, such as the Crooked River, emptying into lakes, picturesque waters such as Panther Pond, and wetlands throughout the Sebago Lakes Region of southern Maine. Most of the residents in this region depend on the groundwater for their drinking water. Those residents in the Portland Water District get their drinking water from Sebago Lake. Either way, the streams that flow and converge throughout the state—even beyond this watershed—play an integral part of life as we know it.

In thinking about the importance of headwater streams, it’s useful to see streams in a larger watershed context. The U.S. Environmental Protection Agency (EPA) has launched a great online tool with a headwater stream index for the entire United States. Maps showing stream data are available for 48 states (Alaska and Hawai’i are not available at the time of this post). EPA has published the summaries of findings from a 2009 study on intermittent, ephemeral and headwater streams. There’s information about public drinking water systems in the U.S., too. Local drinking waterinformation is also available by state.

What I found interesting in looking at stream data for the State of Maine is that I live in an area where 94-100% of stream miles are contained in Source Protection Areas (SPAs). An SPA is an area “upstream from a drinking water source or intake that contributes surface water flow to the drinking water intake within a 24-hour period.” (EPA, Office of Water) That means that most of, if not all of, the intermittent, headwater and ephemeral streams in those areas support public drinking water systems.

It makes sense. I live in a town that’s home to the “landlocked salmon” in Sebago Lake. The lake is one of the few lakes in the country that receives a Filtration Avoidance Waiver from the EPA. This waiver saves the communities in the region $125 million in construction and operation costs—since there is no need for a water treatment facility. I recently learned that if the Portland Water District had to invest in such a water treatment system, it would cost over $100 million. Currently, the cost-savings come from the convergence of headwater, intermittent and ephemeral streams throughout the Sebago Lakes Region watershed.  We also know that area wetlands are equally valuable for their ecological services, including flood attenuation and protecting water quality in those very streams. It is my hope as a local conservation official, and through volunteering with small watershed groups, like the Healthy Waters Coalition in the Sebago Lakes Region, we can inform and educate municipal decision-makers on the value of protecting headwater streams.

Meanwhile, the Maine Association of Wetland Scientists is holding its annual meeting on March 25th. This year’s meeting focuses on rivers and streams.

For further reading, check out these related blogs:

Streams Take Me By Surprise, by Travis Loop, EPA blog

Rivanna streams not safe for swimming and boating? Find out more on Thurs, March 21
Rivanna River Basin Commission (Charlottesville, VA)

Managing Municipal Stormwater: Protecting Water Quality, Streams and Communities
Penn State Extension Blog

Rivers, Streams, Water Falls, Food and More, by Bill Trussell, Fishing Through Life

For further information about streams, click here.

Tar Sands, Pipeline Proposals & Wetlands

In preparing for a conservation commission meeting, I have been learning more about the tar sands crude oil pipelines and the potential impacts they have on water resources. Previously, I had heard about the tar sands and oil spill on the Kalamazoo River in Michigan in 2010 and the crude oil spill in Yellowstone in 2011 (MT), but I did not know much about tar sands extraction and transportation into North America. Lately there has been some press about a New England proposal for an Enbridge pipeline project. For example, I read a NWF blog post last month and came across a number of useful background documents on state, regional and national issues related to tar sands crude oil pipelines on the Natural Resources Council of Maine’s website. Also in April, the National Wildlife Federation published a report, “After the Marshall Spill: Oil Pipelines in the Great Lakes Region,” which assesses the regulatory issues involved in protecting wetlands and waters in the Great Lakes from similar disasters in the future.

Heating oil pipelineFrom local issues to national concerns:  The topic of tar sands crude oil pipeline proposals in my community of Maine is echoed throughout the New England region, and throughout the U.S. all the way to the Gulf of Mexico. In southern Maine, Sebago Lake, the source of drinking water for the city of Portland, Maine and surrounding towns, plays a prominent role in a number of environmental advocacy groups’ efforts to halt proposals for pumping tar sands through the state. The pipeline currently runs from South Portland, Maine through the Lakes Region towns, including Windham, where ASWM is headquartered, crossing Panther Run and the Crooked River, which feed Sebago Lake. This is just one small area of the longer pipeline, which would cross through many other watersheds throughout New England.

After I presented information at my local conservation commission meeting, I ran into a few neighbors and residents who commented on the issue of a tar sands pipeline proposal that could have an impact on Maine’s watersheds and natural resources.  One business owner said, “They’re still cleaning up the spill in Michigan! If that happened here, we’d be done.” Similar views have been expressed at town meetings, on PBS presentations(winter 2012) and at university informational sessions in southern Maine. The Natural Resources Council of Maine has an ongoing project informing citizens about the proposal and its potential impacts to Maine, as well as the Enbridge proposals for tar sands pipelines elsewhere in the country. For a fact sheet on Tar Sands, Keystone Pipeline Project in Maine (2012), click here.

Boreal Forest Before and AfterWhat are tar sands and where do they come from? Tar sands are a mixture of clay, sand, water and bitumen, a heavy black viscous oil.  The process extracts the bitumen from the other materials and requires other treatment before it can be refined.  It is so thick it requires dilution with additional hydrocarbons before it can be transported through pipelines when it can be later turned into conventional heating oil. This process of transporting it in pipelines has many potentially hazardous impacts to water and other natural resources in the event of a spill.  Once the tar sands crude oil is transported, the process of turning it into conventional oil is not cost-effective or ecologically sensible.  The process releases more than double the harmful greenhouse gasses than conventional heating oil does during production. (See Scientific American.) Currently, the bulk of the tar sands originate in Alberta, Canada—where large pools called tar pits have replaced wetlands. These tar pits are big enough to be seen from space. The most threatened habitat are Canada’s boreal forests, which is 1.3 billion acres of wetlands—among the largest in-tact wetland ecosystems on Earth. Unfortunately, most of the wastewater involved with the tar sands production ends up in streams and rivers throughout the boreal forest, contaminating the wetlands and threatening bird and wildlife habitat. For Alberta’s Government webpage on oil sands, click here.

Alberta Oil Sands MapAccording to mining company reports, 64% of the mining landscape is made up of peatlands. (See related study, “Oil sands mining and reclamation cause massive loss of peatland and stored carbon.”)  There’s some effort underway to restore the wetlands that have been affected by tar sands in Alberta. Oil Sands Wetlands Reclamation: Syncrude, Suncor Plan To Reconstruct Fens It’s unconventional wetland restoration on a large scale. Essentially they’re hoping to recreate a 50-hectare watershed, not just a wetland, for one project. That’s about 125 acres of wetlands and waters. The University of Waterloo’s department of geography and environmental management is involved with the watershed restoration planning. It’s been called a Tar Sands Wetlands Reclamation. However, some Canadian wetland scientists are doubtful that this will work to restore the wetlands.  They say, “Instead of bogs and fens, the industry will build hills topped by plantation forests and fill large man-made lakes with toxic waste bordered by shrubs and salty marshes.” (Rooney, et.al., 2011)

“It’s a completely different landscape,” says study co-author Suzanne Bayley, one of Canada’s top wetland ecologists and a University of Alberta professor. See Scientists Doubt Fix to Wetlands Damaged by Oil Sands Furthermore, fewer wetlands means drier conditions and more fire hazards. See a related presentation on The State of Oil Sands Wetlands Reclamation and Slow Down Oil Sands to Save Wetlands, Scientist Says –with details from a related study of Canadian wetlands. For an Alberta wetlands fact sheet by Water Matters, click here.

So what about tar sands pipelines in the U.S.? In addition to the discussions ongoing in New England, there’s a lot of information available on the potential impacts and environmental risks of tar sands pipeline projects nationally. See Tar Sands Pipelines Safety Risks

By Natural Resources Defense Council, National Wildlife Federation, et.al. – February 2011

Tar Sands Invasion: How Dirty and Expensive Oil from Canada Threatens America’s New Energy Economy By NRDC, Earth Works, Sierra Club, et. al. – May 2010.

Further reading:

Study Disputes Oil Sands ‘Restoration’ Pledge (NY Times Green Blog, March 2012)
Tran-Canada’s New Permit Still Threatens Nebraska’s Water and U.S. Energy Security 
New Keystone XL Tar Sands Pipeline Permit Rejected by Nebraska Residents
 
In through the backdoor: Is Enbridge Inc. trying to bring tar sands to Central Canada and New England?

Sulfide Mining Regulation in the Great Lakes Region
 (includes links to series of reports on impacts to water resources in several states –WI, MI, MN, plus Ontario)
Cattle Ranchers, Environmentalists and the Keystone XL Pipeline

Video: Robert Redford and Waterkeeper Alliance on XL Keystone Pipeline Protest
 (2011)
May 2012 Update: The Great Lakes, New Dumping Ground for Tar Sands Oil
http://ecowatch.org/2012/the-great-lakes-new-dumping-ground-for-tar-sands-oil/

The State of the Gulf Coast Wetlands—Two Years After the B.P. Oil Spill

Since the Deepwater Horizon spill of 2010, dolphin strandings have occurred at an unprecedented high level—over 500 stranded dolphins—one indicator that there is still a major problem in the Gulf (NOAA). Another strong indicator is the accelerated rate of coastal wetland loss in the Gulf as direct result from the impacts of the spill. Prior to the 2010 spill, the state of Louisiana already faced significant coastal wetland loss—about the area equivalent to a football field’s worth of wetlands every hour. Over 1,000 miles of coastal wetlands were contaminated by the oil spill, and despite restoration efforts, the rate of coastal wetland loss is now made more complex by the spill and clean-up process. Efforts to clean up the oil in the marshes, in some areas, depending on the extent of the contamination, have caused further damage to the wetlands. (NWF) A recent report by the National Wildlife Federation, “A Degraded Gulf of Mexico: Wildlife and Wetlands—Two Years into the Gulf OilDisaster” assesses the impacts to sea turtles, dolphins, pelicans, other wildlife and coastal wetlands affected by the B.P. oil spill.

NOAA announced this month that eight Gulf coast restoration projects will begin this year with $60 million earmarked for the work to create marshes, improve coastal dune habitat, restore oyster beds and reefs, and other projects related to the boat industry.  The first phase of the projects will take place in Louisiana, Alabama, Mississippi and Florida. There is more information about these restoration projects atwww.gulfspillrestoration.noaa.gov and www.doi.gov/deepwaterhorizon

Specific project fact sheets on each restoration project involved in this first phase of the Gulf Coast Restoration, called “Early Restoration,” an effort to get the natural resources back to the state prior to the spill, are available on NOAA’s website.  To learn more about the Gulf Coast Early Restoration efforts underway, go to:http://www.gulfspill
restoration.noaa.gov/
restoration/early-restoration/

As part of the response to the spill two years ago, a number of organizations and agencies have worked hard to address the critical needs of wildlife that depended on the coastal wetlands that were contaminated or destroyed by the spill. For example, a shorebird habitat enhancement project provided alternative habitat in Mississippi for waterfowl. A sea turtle project improved nesting and hatching on the Texas coast.

The Gulf coast’s diverse shoreline includes mangroves, cypress swamps, fresh and saltwater marshes and mudflats. What’s really at stake here? More than half of the coastal wetlands in the lower 48 states are located on the Gulf coast, which is also where the majority of coastal wetland loss has been occurring.  About 40% of these are in Louisiana. (NOAA) There is an important link between the healthy coastal marshes, their ecological role in serving as a nursery for invertebrates and small fish, and the larger fisheries and their health—which in turn, have a big impact on both the economy and well-being of people along the Gulf coast. In a healthy coastal marsh, the wetland soils and vegetation protect the land from storm surge, reduce flooding and improve water quality in the surrounding watershed. In a coastal marsh that has been contaminated by oil, the vegetation dies and the soil no longer has the ability to hold its position; it becomes more likely to erode during storms and even day-to-day tidal activity. Coastal wetlands are disappearing at an alarming rate, becoming open ocean.

One would think that cleaning up the oil during the response to the disaster would have solved the problem of contaminated marshes. But it doesn’t work that way. The vulnerable wetlands were threatened by the clean-up response methods intended to save them. The tools used to prevent oil from contaminating shorelands, including booms, got stuck in the wetlands.  Other techniques used to remove the oil disturbed and killed vegetation and other living things. Oily mats smothered mudflats and sand removal disturbed the beach habitat. These unintended impacts have been monitored and a number of contaminated marsh studies will help the response teams to evaluate these impacts and clean-up methods. For more information, see this Status Update: Natural Resource Damage Assessment (NOAA, April 2012).

Related blogs:

Gulf Restoration Network (includes photo slide show): Bird’s Eye View: An Earth Day Reflection In Photos Of The Last 2 Years Of The BP Drilling Disaster

Huffington Post blogs and videos of Gulf Oil Spill

Response & Restoration (NOAA) blog

8 Gulf coast restoration projects announced

Environmental Defense Fund blog: ASFPM Agrees: Some Gulf oil spill fines should go to Gulf restoration (Feb. 2012)

For background information on the impact of the oil spill on wetlands and related media over the past two years, visit ASWM’s Gulf Oil Spill Impact on Wetlands page I put together.